LARGE-SCALE ACOUSTIC CHARACTERIZATION OF MID-LOW VOWELS ACROSS AMERICAN, BRITISH, AND SINGAPOREAN CHILDREN

Inner circle (e.g. US, UK)

- magnitude greater than past work

[1] J. S. Garofolo and et al., "TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1," 1993 [2] M. Russell, "The PF-STAR British English Children's Speech Corpus," The Speech Ark Limited, December 2006 [3] A. Batliner, M. Blomberg, S. D'Arcy, D. Elenius, D. Giuliani, M. Gerosa, C. Hacker, M. Russell, S. Steidl, and M. Wong, "The PF STAR Children's Speech Corpus," in INTERSPEECH 2005, Eurospeech, 9th European Conference on Speech Communication and Technology, Lisbon, Portugal, September 4-8, 2005, pp.2761–2764.

Yuling Gu

New York University, USA yuling.gu@nyu.edu

[5] N. F. Chen, R. Tong, D. Wee, P. Lee, B. Ma, and H. Li, "SingaKids-Mandarin: Speech Corpus of Singaporean Childrer Speaking Mandarin Chinese," in INTERSPEECH 2016, 17th Annual Conference of the International Speech Communication Association, San Francisco, USA, September 8-12, 2016, pp. 1545–1549. [6] P. Boersma, Praat, a system for doing phonetics by computer, Glot International 5 (9/10) (2001) 341–345.

Nancy F. Chen

Institute for Infocomm Research,

A*STAR, Singapore

nfychen@i2r.a-star.edu.sg

1		
H	Z)	

Source of vowel chart: Ladefoged Peter and Johnson Keith. 2010. A Course in Phonetics, Sixth Edition. Cengage Learning, Inc

Figure 1: F1 and F2 estimates of TRAP-BATH split vowels across speakers

5.2 /æ/ and /ε/ contrast

6. DISCUSSION

Singapore English: changing **beyond British historical influence D**Embodying **American pronunciation** characteristics **Other potential characteristics or influences? (Check out my poster on approximants!)**

Corpus	F1	F1 se	F2	F2 se
	mean		mean	
SG	908.84	5.71	2,267.79	9.84
AE	827.55	8.17	2,186.58	15.91
BE	902.73	12.24	1,617.13	13.22

Table 1: Mean and standard error (se) for each speaker group

BE & SG: higher F1 (lowered tongue height) AE & SG: higher F2 (more fronted tongue position)

Corpus	Phone	F1	F1 se	F2	F2 se
		mean		mean	
SG	/æ/	875.11	5.40	2,327. 39	9.77
	/ɛ/	796.35	4.64	2,353. 92	10.02
AE	/æ/	901.59	7.39	2,082. 68	12.36
	/ɛ/	785.44	5.87	2,059. 39	11.55
BE	/æ/	959.93	13.40	1,802. 39	13.89
	/ɛ/	751.79	9.80	2,009. 81	16.36

Table 2: Mean and standard error (se) for each speaker group for $/\alpha$ and $/\epsilon$

AE & SG: /æ/ more acoustically similar to $/\epsilon/$

- SG